Mystery of why comets glow green is finally solved after puzzling scientists for 90 years

Lasers splitting dicarbon atoms revealed why the heads – but not tails – of comets give off the strange glow

Adam Smith
Tuesday 28 December 2021 14:06 GMT
Comments
(NASA Goddard)
Leer en Español

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

Scientists have finally solved the mystery of why comets heads are green – but not their tails.

A comet’s tail is made from the volatile materials inside the comet vaporising, which carries dust and gas out with them. This detritus reflects sunlight, leaving it glowing.

Strangely, however, while many comets glow green as they streak across the sky, this hue never reaches their tails.

This mystery has been puzzling scientists since the 1930s, when it was suggested that diatomic carbon created by the interaction of sunlight and organic matter on the comet’s head was being destroyed by sunlight.

This theory has historically been difficult to test because dicarbon is not stable, but now scientists have been able to experiment on it under laboratory conditions.

“We’ve proven the mechanism by which dicarbon is broken up by sunlight,” says Timothy Schmidt, a chemistry professor at the University of New South Wales.

“This explains why the green coma – the fuzzy layer of gas and dust surrounding the nucleus – shrinks as a comet gets closer to the Sun, and also why the tail of the comet isn’t green.”

Dicarbon is made of two carbon atoms and is only found in extremely high-energy or low-oxygen environments. The molecule does not exist until the comet gets close to the Sun, as organic matter living on the icy body evaporates as heat warms it up.

As the comet gets even closer to the Sun, extreme UV radiation breaks apart the dicarbon molecules it recently created in a process called ‘photodissociation’.

This process destroys the dicarbon before it can move far from the nucleus, causing the green coma – the part around the nucleus of the comet – to get brighter and shrink, ensuring the green hue never reaches the tail.

The scientists created dicarbon molecules that they then sent through a gas beam in a two metre-long vacuum chamber. Two ultraviolet lasers were then pointed towards the molecule – one to flood it with radiation, the other to make its atoms detectable. The atoms were sent flying into a speed detector, letting them measure the strength of the carbon bond.

This was not an easy task; it took nine months for the researchers to make their first observation, as the light from all the lasers used is invisible.

Now that the discovery has been made, the findings might help scientists better understand the other 3700 comets in the known solar system.

“Dicarbon comes from the breakup of larger organic molecules frozen into the nucleus of the comet – the sort of molecules that are the ingredients of life,” Professor Schmidt said.

“By understanding its lifetime and destruction, we can better understand how much organic material is evaporating off comets. Discoveries like these might one day help us solve other space mysteries.”

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in