Stay up to date with notifications from The Independent

Notifications can be managed in browser preferences.

What’s the secret to living past 100?

Why some people join the century club and others don’t is still a bit of a mystery. But, as Richard Faragher and Nir Barzilai explain, science is getting closer to the answer

Thursday 02 December 2021 00:01 GMT
Comments
Could it be down to rare genetics?
Could it be down to rare genetics? (Getty)

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

A 35-year-old man only has a 1.5 per cent chance of dying in the next ten years. But the same man at 75 has a 45 per cent chance of dying before he reaches 85. Clearly, ageing is bad for our health. On the bright side, we have made unprecedented progress in understanding the fundamental mechanisms that control ageing and late-life disease.

A few tightly linked biological processes, sometimes called the “hallmarks of ageing”, including our supply of stem cells and communication between cells, act to keep us healthy in the early part of our lives – with problems arising as these start to fail. Clinical trials are ongoing to see if targeting some of these hallmarks can improve diabetic kidney disease, aspects of immune function and age-related scarring of the lungs among others. So far, so good.

Unfortunately, big, unanswered questions remain in the biology of ageing. To evaluate what these are and how to address them, the American Federation For Aging Research, a charity, recently convened a series of meetings for leading scientists and doctors. The experts agreed that understanding what is special about the biology of humans who survive more than a century is now a key challenge.

These centenarians comprise less than 0.02 per cent of the UK population but have exceeded the life expectancy of their peers by almost 50 years (babies born in the 1920s typically had a life expectancy of less than 55). How are they doing it?

We know that centenarians remain in good health for about 30 years longer than most normal people and when they finally fall ill, they are only sick for a very short time. This “compression of morbidity” is clearly good for them, but also benefits society as a whole. In the US, the medical care costs for a centenarian in their last two years of life are about a third of those of someone who dies in their seventies (a time when most centenarians don’t even need to see a doctor).

The children of centenarians are also much healthier than average, indicating they are inheriting something beneficial from their parents. But is this genetic or environmental?

Centenarians aren’t always health conscious

Most people know that small dogs tend to live longer than big ones but fewer are aware that this is a general phenomenon across the animal kingdom

Are centenarians the poster children for a healthy lifestyle? For the general population, watching your weight, not smoking, drinking moderately and eating at least five servings of fruit and vegetables a day can increase life expectancy by up to 14 years compared with someone who does none of these things. This difference exceeds that seen between the least and most deprived areas in the UK, so intuitively it would be expected to play a role in surviving for a century.

But astonishingly, this needn’t be the case. One study found that up to 60 per cent of Ashkenazi Jewish centenarians have smoked heavily most of their lives, half have been obese for the same period of time, less than half do even moderate exercise and under 3 per cent are vegetarians. The children of centenarians appear no more health conscious than the general population either.

Compared to peers with the same food consumption, wealth and body weight, however, they have half the prevalence of cardiovascular disease. There is something innately exceptional about these people.

The big secret

Could it be down to rare genetics? If so, then there are two ways in which this could work. Centenarians might carry unusual genetic variants that extend lifespan, or instead they might lack common ones that cause late-life disease and impairment. Several studies, including our own work, have shown that centenarians have just as many bad genetic variants as the general population.

Some even carry two copies of the largest known common risk gene for Alzheimer’s disease (APOE4), but still don’t get the illness. So a plausible working hypothesis is that centenarians carry rare, beneficial genetic variations rather than a lack of disadvantageous ones. And the best available data is consistent with this.

Centenarians comprise less than 0.02 per cent of the UK population
Centenarians comprise less than 0.02 per cent of the UK population (Getty/iStockphoto)

Over 60 per cent of centenarians have genetic changes that alter the genes which regulate growth in early life. This implies that these remarkable people are human examples of a type of lifespan extension observed in other species. Most people know that small dogs tend to live longer than big ones but fewer are aware that this is a general phenomenon across the animal kingdom. Ponies can live longer than horses and many strains of laboratory mice with dwarfing mutations live longer than their full-sized counterparts. One potential cause of this is reduced levels of a growth hormone called IGF-1 – although human centenarians are not necessarily shorter than the rest of us.

Obviously, growth hormone is necessary early on in life, but there is increasing evidence that high levels of IGF-1 in mid to late life are associated with increased late-life illness. The detailed mechanisms underlying this remain an open question, but even among centenarians, women with the lowest levels of growth hormone live longer than those with the highest. They also have better cognitive and muscle function.

That doesn’t solve the problem, though. Centenarians are also different from the rest of us in other ways. For example, they tend to have good cholesterol levels – hinting there may be several reasons for their longevity.

Ultimately, centenarians are “natural experiments” who show us that it is possible to live in excellent health even if you have been dealt a risky genetic hand and chose to pay no attention to health messages – but only if you carry rare, poorly understood mutations.

Understanding exactly how these work should allow scientists to develop new drugs or other interventions that target biological processes in the right tissues at the right time. If these become a reality perhaps more of us than we think will see the next century in. But, until then, don’t take healthy lifestyle tips from centenarians.

Richard Faragher is a professor of biogerontology at the University of Brighton. Nir Barzilai is a professor of medicine and genetics at the Albert Einstein College of Medicine. This article first appeared on The Conversation.

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in