The Independent's journalism is supported by our readers. When you purchase through links on our site, we may earn commission.
Artificial life breakthrough after scientists create new living organism using synthetic DNA
The organism can store and retrieve man-made genetic information
Your support helps us to tell the story
From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.
At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.
The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.
Your support makes all the difference.In a major step toward creating artificial life, US researchers have developed a living organism that incorporates both natural and artificial DNA and is capable of creating entirely new, synthetic proteins.
The work, published in the journal Nature, brings scientists closer to the development of designer proteins made to order in a laboratory.
Previous work by Floyd Romesberg, a chemical biologist at the Scripps Research Institute in La Jolla, California, showed that it was possible to expand the genetic alphabet of natural DNA beyond its current four letters: adenine(A), cytosine(C), guanine (G) and thymine(T).
In 2014, Romesberg and colleagues created a strain of E. coli bacteria that contained two unnatural letters, X and Y.
In the latest work, Romesberg’s team has shown that this partially synthetic form of E. coli can take instructions from this hybrid genetic alphabet to make new proteins.
“This is the first time ever a cell has translated a protein using something other than G, C, A or T,” Romesberg said.
Although the actual changes to the organism were small, the feat is significant, he said in a telephone interview. “It’s the first change to life ever made.”
It’s a goal Romesberg has been working toward for the past 20 years. Creating new forms of life, however, is not the main point. Romesberg is interested in using this expanded genetic alphabet to create new types of proteins that can be used to treat disease.
In 2014, he formed a company called Synthorx Inc, which is working on developing new protein-based treatments.
“A lot of proteins that you want to use as drugs get cleared in the kidney very quickly,” Romesberg said. The new system would allow scientists to attach fat molecules to drugs to keep them in the body longer.
Romesberg is aware that the creation of semi-synthetic organisms might raise concerns of hybrid life forms spreading beyond the lab, but the system they used makes such an escape unlikely.
For example, in natural DNA, base pairs are attracted to each other through the bonding of hydrogen atoms. Romesberg’s X and Y bases are attracted through an entirely different process, which prevents them from accidentally bonding with natural bases.
And because cells cannot make their own X and Y without the addition of certain chemicals, the semi-synthetic organisms cannot live outside of a laboratory.
“They can’t escape,” Romesberg said. “There’s no ‘Jurassic Park’ scenario.”
Reuters
Join our commenting forum
Join thought-provoking conversations, follow other Independent readers and see their replies
Comments