Stay up to date with notifications from The Independent

Notifications can be managed in browser preferences.

Research suggests Mercury continues to shrink

Mercury’s radius may have decreased by as much as 7km, models and observations indicate.

Nina Massey
Monday 02 October 2023 16:55 BST
A new study supports the continued shrinking of Mercury (Nasa/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)
A new study supports the continued shrinking of Mercury (Nasa/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

New research strongly suggests that the planet Mercury is continuing to shrink.

The smallest planet in the solar system began to contract at least three billion years ago, and experts suggest it is likely that the rate of contraction has been decreasing since then.

Mercury’s radius may have decreased by as much as 7km, models and observations indicate.

The contracting of the planet has produced lobate scarps, which are long, tectonic structures on its surface.

Our discovery of so many grabens is significant as it indicates that not only has Mercury’s tectonism been active recently, but it is also widespread across the surface of the planet

Benjamin Man, The Open University

But until now, evidence of tectonic activity on Mercury has been lacking.

While undertaking a global survey of Mercury using data from Nasa’s Messenger mission (2011-2015), Open University (OU) research student Benjamin Man, who led the study, discovered small, fresh landforms called grabens.

Mr Man said: “The discovery of small grabens associated with larger tectonic structures was serendipitous.

“As part of my doctoral studies, I have made the first geological map of a region of the planet and whilst doing so, I came across some of the most impressive examples of these.

“This led me to undertake a global survey where I looked at over 25,000 individual images where I discovered hundreds of small grabens.

“Our discovery of so many grabens is significant as it indicates that not only has Mercury’s tectonism been active recently, but it is also widespread across the surface of the planet.

“This is important as it confirms that global contraction is ongoing and raises questions regarding the thermochemical properties of Mercury’s interior.”

The grabens are small, shallow landforms, and so they would not be expected to survive for hundreds of millions of years, let alone a billion years.

The researchers measured the depths of the grabens by looking at the length of the shadows they cast and calculating the position of the spacecraft and the position of the sun.

They also predicted the maximum depth of the structures when they first formed using the length of the structures.

The researchers then calculated how long it would take for them to infill and consequently found that many of the grabens likely formed in the past few hundred million years.

The discovery of so many of these features on many large compressional tectonic structures shows that recent tectonism –  the faulting or folding of the outer layer of a planet – is widespread on Mercury.

Researchers suggest the study, published in Nature Geoscience, provides strong evidence for continued global contraction into the present day.

David Rothery, professor of planetary geosciences at the Open University, is the lead supervisor of the project and a member of the science team for BepiColombo.

He said: “As well as finding many clear examples of small grabens atop lobate scarps, Ben found an even greater number of likely examples that we can’t be sure of, because the detail in the Messenger images is not quite clear enough.

“When the joint European/Japanese mission BepiColombo starts to send back even more detailed pictures from orbit about Mercury early in 2026 these ‘probable’ grabens will be among its targets, which will enable the scale and extent of recent fault movements on Mercury to be clarified – or possibly refuted if Ben and I are wrong. That’s how science works.”

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in