Test that can predict death - with a terrifying degree of accuracy
Research on birds shows that new blood test can determine speed of ageing, reports Steve Connor
Your support helps us to tell the story
From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.
At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.
The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.
Your support makes all the difference.A blood test to determine how fast someone is ageing has been shown to work on a population of wild birds, the first time the ageing test has been used successfully on animals living outside a laboratory setting.
Click graphic to enlarge
The test measures the average length of tiny structures on the tips of chromosomes called telomeres which are known to get shorter each time a cell divides during an organism’s lifetime.
Telomeres are believed to act like internal clocks by providing a more accurate estimate of a person’s true biological age rather than their actual chronological age.
This has led some experts to suggest that telomere tests could be used to estimate not only how fast someone is ageing, but possibly how long they have left to live if they die of natural causes.
Telomere tests have been widely used on experimental animals and at least one company is offering a £400 blood test in the UK for people interested in seeing how fast they are ageing based on their average telomere length.
Now scientists have performed telomere tests on an isolated population of songbirds living on an island in the Seychelles and found that the test does indeed accurately predict an animal’s likely lifespan.
“We saw that telomere length is a better indicator of life expectancy than chronological age. So by measuring telomere length we have a way of estimating the biological age of an individual – how much of its life it has used up,” said David Richardson of the University of East Anglia.
The researchers tested the average telomere lengths of a population of 320 Seychelles Warblers living on the remote Cousin Island, which ornithologists have studied for 20 years, documenting the life history of each bird.
“Our results provide the first clear and unambiguous evidence of a relationship between telomere length and mortality in the wild, and substantiate the prediction that telomere length and shortening rate can act as an indicator of biological age further to chronological age,” says the study published in the journal Molecular Ecology.
Studying an island population of wild birds was important because there were no natural predators and little migration, meaning that the scientists could accurately study the link between telomere length and a bird’s natural lifespan.
“We wanted to understand what happens over an entire lifetime, so the Seychelles warbler is an ideal research subject. They are naturally confined to an isolated tropical island, without any predators, so we can follow individuals throughout their lives, right into old age,” Dr Richardson said.
“We investigated whether, at any given age, their telomere lengths could predict imminent death. We found that short and rapidly shortening telomeres were a good indication that the bird would die within a year,” he said.
“We also found that individuals with longer telomeres had longer life spans overall. It used to be thought that telomere shortening occurred at a constant rate in individuals, and that telomere length could act as an internal clock to measure the chronological age of organisms in the wild,” Dr Richardson said.
“However while telomeres do shorten with chronological age, the rate at which this happens differs between individuals of the same age. This is because individuals experience different amounts of biological stress due to the challenges and exertions they face in life. Telomere length can be used as a measure of the amount of damage an individual has accumulated over its life,” he added.
Join our commenting forum
Join thought-provoking conversations, follow other Independent readers and see their replies
Comments