Stay up to date with notifications from The Independent

Notifications can be managed in browser preferences.

The Independent's journalism is supported by our readers. When you purchase through links on our site, we may earn commission. 

Scientists use laser to unlock the secrets of antimatter

Physicists learn how to measure antimatter using light

Safya Khan-Ruf
Friday 23 December 2016 19:23 GMT
Comments
A model of the Large Hadron Collider
A model of the Large Hadron Collider (Getty)

Your support helps us to tell the story

From reproductive rights to climate change to Big Tech, The Independent is on the ground when the story is developing. Whether it's investigating the financials of Elon Musk's pro-Trump PAC or producing our latest documentary, 'The A Word', which shines a light on the American women fighting for reproductive rights, we know how important it is to parse out the facts from the messaging.

At such a critical moment in US history, we need reporters on the ground. Your donation allows us to keep sending journalists to speak to both sides of the story.

The Independent is trusted by Americans across the entire political spectrum. And unlike many other quality news outlets, we choose not to lock Americans out of our reporting and analysis with paywalls. We believe quality journalism should be available to everyone, paid for by those who can afford it.

Your support makes all the difference.

Scientists have succeeded in shining light on trapped antimatter atoms to detect whether they behave differently to regular atoms. This is the first time physicists have managed to control antimatter long enough to directly measure its behaviour and compare it.

The achievement is the result of two decades of work and opens up new ways of studying antimatter. “This is the reason CERN was created,” said Jeffrey Hangst, spokesperson for Cern’s Alpha experiment in Switzerland and professor at Aarrhus University in Denmark.

The study, published in Nature this week, showed the antihydrogen atom responded the same way a hydrogen atom would under light. If it hadn’t, scientists would have had to rethink their understanding of physics.

Antimatter is identical to matter, except that everything within its atoms is the opposite way round, with negative charge being positive and left becoming right. Physicists believe the Big Bang created equal amounts of matter and antimatter - but none of the current theories can explain why the Universe mostly consists of matter. The findings don’t explain why this is the case, but it suggests it is not due to the inherent nature of antimatter atoms.

A General view of the CERN (European Organization for Nuclear research)
A General view of the CERN (European Organization for Nuclear research) (Getty)

The group used a one-of-a-kind machine to trap antihydrogen with magnetic fields. Antimatter is extremely hard to study as it can’t coexist with matter. “It’s a watershed moment, we had to make a lot of technological developments to get to this point. First we had to make antihydrogen atoms, one at a time. Then we had to hold on to them for long enough. Finally we shone a laser on it,” Mike Charlton, one of the scientists on the Alpha project, told the Independent.

Mairi Sakellariadou, professor of theoretical physics at King’s College London, said the experiment was an exciting achievement from an experimental standpoint and “confirmed the validity of the Standard Model” which is the current model to describe particles and the forces between them.

The next step for the team will be refining their measurements. “Until now, we’ve hit the antihydrogen with light, but now we’re going to study it with greater precision,” Charlton said.

Join our commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in